1,154 research outputs found

    Magnetization steps in Zn_(1-x)Mn_xO: Four largest exchange constants and single-ion anisotropy

    Full text link
    Magnetization steps (MST's) from Mn pairs in several single crystals of Zn_(1-x)Mn_xO (0.0056<=x<=0.030, and in one powder (x=0.029), were observed. The largest two exchange constants, J1/kB=-18.2+/-0.5K and J1'/kB=-24.3+/-0.6K, were obtained from large peaks in the differential susceptibility, dM/dH, measured in pulsed magnetic fields, H, up to 500 kOe. These two largest J's are associated with the two inequivalent classes of nearest neighbors (NN's) in the wurtzite structure. The 29% difference between J1 and J1' is substantially larger than 13% in CdS:Mn, and 15% in CdSe:Mn. The pulsed-field data also indicate that, despite the direct contact between the samples and a superfluid-helium bath, substantial departures from thermal equilibrium occurred during the 7.4 ms pulse. The third- and fourth-largest J's were determined from the magnetization M at 20 mK, measured in dc magnetic fields H up to 90 kOe. Both field orientations H||c and H||[10-10] were studied. (The [10-10] direction is perpendicular to the c-axis, [0001].) By definition, neighbors which are not NN's are distant neighbors (DN's). The largest DN exchange constant (third-largest overall), has the value J/kB=-0.543+/-0.005K, and is associated with the DN at r=c. Because this is not the closest DN, this result implies that the J's do not decrease monotonically with the distance r. The second-largest DN exchange constant (fourth-largest overall), has the value J/kB=-0.080 K. It is associated with one of the two classes of neighbors that have a coordination number z=12, but the evidence is insufficient for a definite unique choice. The dependence of M on the direction of H gives D/kB=-0.039+/-0.008K, in fair agreement with -0.031 K from earlier EPR work.Comment: 12 pages, 10 figures. Submitted to PR

    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions

    Get PDF
    The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors

    Full text link
    We determine the specific heat amplitude ratio near a mm-axial Lifshitz point and show its universal character. Using a recent renormalization group picture along with new field-theoretical ϵL\epsilon_{L}-expansion techniques, we established this amplitude ratio at one-loop order. We estimate the numerical value of this amplitude ratio for m=1m=1 and d=3d=3. The result is in very good agreement with its experimental measurement on the magnetic material MnPMnP. It is shown that in the limit m→0m \to 0 it trivially reduces to the Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review

    PlGFMMP9-engineered iPS cells supported on a PEGfibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium

    Get PDF
    Cell-based regenerative therapies are significantly improved by engineering allografts to express factors that increase vascularization and engraftment, such as placental growth factor (PlGF) and matrix metalloproteinase 9 (MMP9). Moreover, the seeding of therapeutic cells onto a suitable scaffold is of utmost importance for tissue regeneration. On these premises, we sought to assess the reparative potential of induced pluripotent stem (iPS) cells bioengineered to secrete PlGF or MMP9 and delivered to infarcted myocardium upon a poly(ethylene glycol)-fibrinogen scaffold. When assessing optimal stiffness of the PEG-fibrinogen (PF) scaffold, we found that the appearance of contracting cells after cardiogenic induction was accelerated on the support designed with an intermediate stiffness. Revascularization and hemodynamic parameters of infarcted mouse heart were significantly improved by injection into the infarct of this optimized PF scaffold seeded with both MiPS (iPS cells engineered to secrete MMP9) and PiPS (iPS cells engineered to secrete PlGF) cells as compared with nonengineered cells or PF alone. Importantly, allograft-derived cells and host myocardium were functionally integrated. Therefore, survival and integration of allografts in the ischemic heart can be significantly improved with the use of therapeutic cells bioengineered to secrete MMP9 and PlGF and encapsulated within an injectable PF hydrogel having an optimized stiffness

    Quantum analogue of the spin-flop transition for a spin pair

    Full text link
    Quantum (step-like) magnetization curves are studies for a spin pair with antiferromagnetic coupling in the presence of a magnetic field parallel to the easy axis of the magnetic anisotropy. The consideration is done both analytically and numerically for a wide range of the anisotropy constants and spins up to S≳100S \gtrsim 100. Depending on the origin of the anisotropy (exchange or single-ion), the magnetization curve can demonstrate the jumps more than unity and the concentration of the unit jumps in a narrow range of the field. We also point the region of the problem parameters, where the behavior is quasiclassical for S=5S = 5, and where system is substantially quantum in the limit S→∞S \to \infty.Comment: 5 pages, 5 figure

    A new picture of the Lifshitz critical behavior

    Full text link
    New field theoretic renormalization group methods are developed to describe in a unified fashion the critical exponents of an m-fold Lifshitz point at the two-loop order in the anisotropic (m not equal to d) and isotropic (m=d close to 8) situations. The general theory is illustrated for the N-vector phi^4 model describing a d-dimensional system. A new regularization and renormalization procedure is presented for both types of Lifshitz behavior. The anisotropic cases are formulated with two independent renormalization group transformations. The description of the isotropic behavior requires only one type of renormalization group transformation. We point out the conceptual advantages implicit in this picture and show how this framework is related to other previous renormalization group treatments for the Lifshitz problem. The Feynman diagrams of arbitrary loop-order can be performed analytically provided these integrals are considered to be homogeneous functions of the external momenta scales. The anisotropic universality class (N,d,m) reduces easily to the Ising-like (N,d) when m=0. We show that the isotropic universality class (N,m) when m is close to 8 cannot be obtained from the anisotropic one in the limit d --> m near 8. The exponents for the uniaxial case d=3, N=m=1 are in good agreement with recent Monte Carlo simulations for the ANNNI model.Comment: 48 pages, no figures, two typos fixe
    • …
    corecore